Quelle est la définition récursive ?
Quelle est la définition récursive ?
1 : de, se rapportant à, ou impliquant la récursivité d’ une fonction récursive dans un programme informatique. 2 : de, se rapportant à, ou constituant une procédure qui peut se répéter indéfiniment une règle récursive dans une grammaire.
Comment écrire une formule récursive pour une suite ?
0:247:17Formules récursives Comment écrire – YouTubeYouTubeDébut du clip suggéréFin du clip suggéréSi vous mettez six pour n. Vous avez. Vous avez la valeur d’un sous-six est un sous-marin. Six moins un qui est un sous-PlusSi vous mettez six pour n. Vous avez. Vous avez la valeur d’un sous-six est un sous-marin. Six moins un qui est un sous-cinq qui est ce gars-là plus quatre de plus donc dix-neuf plus quatre vous amène à vingt-trois.
Quelle est la règle récursive pour le quizlet de séquence ?
Une formule récursive désigne le terme de départ, a1, et le nième terme de la séquence , an , comme une expression contenant le terme précédent (le terme qui le précède), an-1. Le processus de récursivité peut être considéré comme l’ascension d’une échelle. Exemple : an=an-1=10 (an=terme courant et an-1=terme précédent).
Parmi les propositions suivantes, laquelle est un exemple de séquence récursive ?
Answer Expert Verified 2, 5, 8, 11, … et 1, 3, 9, 27, … sont des exemples de séquence récursive .
Lequel des éléments suivants peut également être écrit sous la forme d’une séquence récursive ?
La bonne réponse est Suite géométrique , Suite de Fibonacci et Suite arithmétique .
Quelle est la somme des 10 premiers termes de la suite définie par un 2n 3 ?
Réponse : La somme des 10 premiers termes de la suite définie par a n = 2n – 3 est 80.
Quelle est la somme des 10 premiers termes de la suite définie par an ?
Réponse : La somme des 10 premiers termes de la suite définie par est 135.
Quelle est la somme des 10 premiers termes de la suite définie par an 2n 3 a 7 ?
Réponse : La somme des dix premiers termes de la suite est 80.
Quelle est la somme des 30 premiers termes de cette suite arithmétique ?
Réponse : La somme des 30 premiers termes de la suite arithmétique 6, 13, 20, 27, 34, …… est 3225.